

Synthetic Data Generator for Indoor Positioning, Tracking and Navigation
User’s Manual
v1.0, 24.11.2021

Dioptra is a tool to support Research and Development (R&D) activities in the field of Indoor
Positioning, Tracking and Navigation (IPTN). It can be used to generate synthetic datasets
representing the output of the several types of sensors used in IPTN.
One fundamental stage in the research process in IPTN is the evaluation of the proposed
methods/algorithms/systems. The most common practice in this field is to evaluate the new systems
in real-world conditions. This approach, however, has some disadvantages as a first stage of
evaluation, including: (i) quite often, systems are evaluated in very limited spaces, of a single type
(e.g. office building or university lab), and for a short period of time; (ii) setting up a complete
evaluation environment is a very time-consuming and, many times, a costly task, in particular if long
term experiments in large spaces are to be conducted.
Synthetic data, created using a as-realistic-as-possible simulator, can be used for the first stages of
evaluation of IPTN systems with the following advantages: (i) data can be easily generated for long
periods of time and for large spaces; (ii) a large set of different configurations can be easily tested;
(iii) the same data can be used for benchmarking different IPTN systems in a large set of different
conditions.

Dioptra is an open-source tool that has been developed to simplify the task of generating synthetic
datasets for the evaluation of IPTN systems.

1. Dioptra main features

Dioptra was initially developed to help in the evaluation of Wi-Fi fingerprinting-based indoor
positioning systems, and later extended to support other types of IPTN systems.
In its current public version (1.0), Dioptra’s main supported features are:

• easy way for defining the geometry and topology of the space, based on the well-known
OSM1 format;

• several motion models for the moving actors;
• one radio propagation model for radio-based beacons;
• models for Wi-Fi Access Points (as beacon) and BLE beacons;
• models for Wi-Fi and BLE scanners;
• models for heading sensors (basic AHRS emulation);
• models for odometers and step-counters;
• a graphical user interface (GUI) to show and control the simulation progress;

1 OSM – OpenStreetMaps (http://www.openstreetmap.org)

Dioptra User’s Manual, v1.0

- 2 / 11 -

• a command-line interface to directly generate datasets faster;
• text-based (CSV) output files.

Planned to be an open-source tool, Dioptra is prepared to be easily extended to include additional
models, such as alterative radio propagation models, motion models and sensor models.

2. Setting up a simulation environment

Generating a dataset using Dioptra is done in four main steps:

• create the geometry and topology of the physical space, or use one of the provided ready-
to-use space models;

• configure all the actors, with their beacons and sensors, or use one of the provided use
cases;

• set the main simulation parameters;
• run the simulation.

2.1. Geometry and topology of the physical space

The geometry of the physical space for which data is to be created is represented in an XML file
based on the OSM format2. These files can be created manually, or by using one of the existing OSM
editors (e.g. JOSM3, Vespucci4). By using a standard for the representation of the space geometry
and topology, Dioptra takes advantage of the existing editors and data format converters.

Figure 2.1 The JOSM editor.

2 https://wiki.openstreetmap.org/wiki/OSM_file_formats
3 https://wiki.openstreetmap.org/wiki/JOSM
4 http://vespucci.io/

Dioptra User’s Manual, v1.0

- 3 / 11 -

A very simple example of a file representing a rectangular space is shown below.

<?xml version='1.0' encoding='UTF-8'?>
<osm version='0.6' generator='JOSM'>
<!-- GEOMETRY -->
 <node id='-169406' action='modify' visible='true' lat='41.45244434043' lon='-
8.28748857758' /> <- represents a node; these are used later to define geometric objects
…
 <way id='-165502' action='modify' visible='true'> <- a multi-line
 <nd ref='-169406' />
 <nd ref='-169409' />
 <nd ref='-169420' />
 <nd ref='-169410' />
…
 <nd ref='-169406' />
 <tag k='building' v='yes' /> <- represents the outer shell of the building
 <tag k='height' v='6' /> <- floor height (distance from the floor to the ceiling)
 <tag k='lat0' v='41.4524784' /> <- origin latitude (for conversion to XY)
 <tag k='lon0' v='-8.2872281' /> <- origin longitude (for conversion to XY)
 <tag k='rotation' v='-12.4' /> <- rotation, in degrees, measured from North
 <tag k='material' v='cinder_block' /> <- building shell material
 <tag k='width' v='0.4' /> <- building shell wall width [m]

 </way> anti-clockwise (for conversion to XY)
…
 <way id='-165504' action='modify' visible='true'>
 <nd ref='-169418' />
 <nd ref='-169419' />
 <tag k='material' v='cinder_block' /> <- the wall material
 <tag k='type' v='wall' /> <- a multi-line representing a wall
 <tag k='height' v='3' /> <- height of the wall [m]
 <tag k='width' v='0.3' /> <- width of the wall [m]
 </way>
…
 <way id='-165503' action='modify' visible='true'>
 <nd ref='-169413' />
 <nd ref='-169414' />
 <nd ref='-169415' />
 <nd ref='-169407' />
 <nd ref='-169413' />
 <tag k='material' v='wood' /> <- obstacle material
 <tag k='type' v='obstacle' /> <- a multi-line representing an obstacle; must be
 a closed polygon
 <tag k='height' v='2.5' /> <- height of the obstacle [m]
 </way>
…
<!-- TOPOLOGY -->
<node id='-169448' action='modify' visible='true' lat='41.4523636105' lon='-
8.28740693495'>
 <tag k='type' v='graph_node' /> <- represents a node on a graph (topology)
 </node>

…
 <way id='-165520' action='modify' visible='true'>
 <nd ref='-169453' />
 <nd ref='-169454' />
 <tag k='type' v='graph_edge' /> <- represents a set of graph edges (one or more)
 </way>
…
 <relation id='-164789' action='modify' visible='true'> <- a graph representing the
 <member type='way' ref='-165616' role='graph_edge' /> topology of the space
 <member type='way' ref='-165518' role='graph_edge' /> <- one edge of the graph
 <member type='way' ref='-165613' role='graph_edge' />
 <tag k='graph_id' v='stacker' /> <- the graph ID; many graphs can be defined
 <tag k='type' v='undirected_graph' />

Dioptra User’s Manual, v1.0

- 4 / 11 -

 </relation>
</osm>

This space is made of:

• the outer shell of the building (way, type building);
• walls (way, type wall);
• obstacles (way, type obstacle);
• a set of graphs (relation, type undirected_graph) representing the topology of the space:

each graph is made of a set of points (graph_node) connected by a set of edges
(graph_edge).

For walls and obstacles, the material can be specified by a keyword (e.g. “wood”, “red_brick”,
“glass”, etc.). The characteristics of each material are then specified in the configuration file (see
section 2.2).

The topology of a space defines restrictions for traveling between pairs of points in the space, and
is represented by one or more graphs. The topology representation can be used to define the
movement of an object during the simulation (e.g. a vehicle can only move along the edges of one
particular graph).

Multi-floor buildings must be represented by using one OSM file per floor. When these OSM files
are used in the configuration file (see section 2.2), the building_id, floor_id and floor_height
must be provided.
Dioptra 1.0 only supports single building, single floor configurations. Support for multi-building and
multi-floor configurations is expected for future versions.

As shown in the example above, all coordinates used for defining elements in the physical space
(geometry and topology) must be represented as (latitude, longitude) pairs of coordinates in the
WGS84 datum in order to comply with the OSM format. Latitude and Longitude must be represented
as real numbers in the interval (-180°,180°].

Once created, the OSM file must be referred to in the Configuration File.
Examples of files representing several indoor environments are provided with the tool.

2.2. Configuration File

The complete description of the simulation environment is represented in a single text file using the
JSON5 format. This configuration file defines:

• general simulation parameters, such as time duration, output directory, random seed, etc.;
• the space geometry and topology (link to the OSM file(s) described in section 2.1), as well

as the characteristics of the materials used in walls or obstacles;
• a set of actors, fixed or mobile, each one of them hosting transmitters (e.g. a Wi-Fi AP)

and/or sensors (e.g. a Bluetooth scanner or and odometer);
• the mobility models for each one of the moving actors;

5 https://www.json.org/

Dioptra User’s Manual, v1.0

- 5 / 11 -

• the radio propagation model used when measuring received signals in radio-based sensors.

Figure 2.2 illustrates the structure of the configuration file.

Figure 2.2 Structure of the Configuration File

Configuration File

Main Settings

description

sim_duration

random_seed

output_folder

exp_spaceModel

Space Model

Floors

OSM filename

building_id

floor_id

floor_height

Materials

material_id

material_name

attentuation_db

Actors

actor_id

type
fixed transmitter | pedestrian | uav

| machine | robot | probe |
smartphone

collision_buffer

status

Motion model

Random Walk | Grid | Graph-based

(x,y,z,yaw)

Transmiters Wi-Fi Access Point |
BLE Beacon params

Sensors

Wi-Fi Scanner | BLE
Scanner Propagation model

Odometer

Step counter

Heading

Ground truth

Dioptra User’s Manual, v1.0

- 6 / 11 -

An example of a configuration file is shown below.

{
 "settings": { <- Main settings
 "sim_duration": 600,
 "random_seed": -1,
 "output_folder": "Dioptra Data",
 "output_space_model": false,
 "description": "This is an open text area used to describe the simulation."
 },

 "space": { <- Space definition
 "materials": [
 {
 "material": "Cinder Block",
 "material_id": "cinder_block",
 "attenuation_db": 6.7
 },
 …
],
 "floors": [<- reference to the OSM files
 {
 "building_id": "0",
 "floor_id": "0",
 "floor_height": 0.0,
 "osm_file_name": "Scenarios/roomB_v02.osm"
 }
]

 },

"actors": [
 {
 "actor_id": "WIFI AP 1", <- one fixed actor with a Wi-Fi AP
 "type": "fixed_transmitter",
 "status": "enabled",
 "motion_model": {
 "model_name": "static",
 "x": 20.036,
 "y": 4.489,
 "z": 3.0,
 "yaw": 0
 },
 "transmitters": [
 {
 "transmitter_id": "AP 1",
 "type": "wifi_ap",
 "status": "enabled",
 "mac": "00:00:00:00:00:00",
 "channel": 1,
 "power": -21,
 "ssid": "Network X"
 }
]
 },
{
 "actor_id": "Device1", <- one pedestrian carrying two sensors
 "type": "pedestrian",
 "status": "enabled",
 "collision_buffer": 0.8,
 "motion_model": {
 "model_name": "random",
 "z": 0,
 "yaw": 0,
 "max_speed":1.2,
 "yaw_var":10
 },
 "sensors": [

Dioptra User’s Manual, v1.0

- 7 / 11 -

 {
 "sensor_id": "AHRS1",
 "sample_frequency_hz": 20,
 "sensor_type": "AHRS",
 "noise_sigma": 0,
 "sensor_drift": 1.0,
 "status": "enabled"
 },
 {
 "sensor_id": "REF2",
 "sample_frequency_hz": 20,
 "sensor_type": "POSI",
 "status": "enabled"
 },
]
 },

}

The Configuration File should map the structure shown in Figure 2.2.

Configuring the position of fixed elements, such as Wi-Fi Access Points or Bluetooth beacons, is
easier if performed in three steps: (1) run Dioptra with a basic configuration file pointing to the OSM
file and with the GUI enabled; (2) use the GUI (see section 3 below) to read the coordinates where
those elements are to be placed; (3) edit the configuration file and add those elements.

2.3. Running Dioptra

Dioptra is an application developed in Java. To run it, users need to have the Java Runtime
Environment6 installed. Dioptra has been tested with Java version 8. No external libraries need to be
installed as all the required libraries are included in the provided jar file.

Once the space geometry/topology and the configuration files are created, a dataset can be
generated by running Dioptra in the command line:

java -jar Dioptra1.0.jar configs.json

where configs.json is one configuration file as described in section 2.2. The configuration file is
optional. If it is provided, Dioptra runs without the GUI. If no configuration file is provided in the
command line, the tool opens the GUI and offer the user the possibility to choose a configuration
file from the menu.

Executable applications are also provided for OSX (Mac) and Microsoft Windows. However, be aware
that security warnings might be issued by the operating system when opening the tool directly from
the executable file.

The generated dataset is written to the directory defined in the Configuration File. The formats of
the generated files are described in section 4.

6 https://www.oracle.com/java/technologies/javase-jre8-downloads.html

Dioptra User’s Manual, v1.0

- 8 / 11 -

3. Graphical User Interface

While running a simulation, the space geometry/topology, the position of the actors and their
trajectories can be inspected through a Graphical User Interface (GUI). A view of the GUI is shown in
Figure 3.1.

Figure 3.1 The Graphical User Interface

While in the current version the GUI cannot be used to interfere with the simulation parameters, it
offers a set of functionalities (icons on top from left to right):

• load a configuration file (icon 1);
• launch/stop the simulation (icon 2);
• pause/continue the simulation (icon 3);
• change the simulation speed (icon 4);
• change how actors are displayed (icon 5);
• show/hide transmitters (icon 6);
• change some other configurations (icon 7);
• zoom in/out/centre (top right icons);
• panning (top right icons);
• see the coordinates of the cursor in (x,y) and (lat,long) coordinates (bottom right);
• read coordinates of specific points by moving the mouse cursor within the simulation area;

this functionality is particularly useful to read the coordinates where to place fixed elements,
such as BLE beacons.

Closing the GUI window while running a simulation terminates the simulation without exporting the
data generated so far.

4. Output data format

OPEN CONFIG FILE

STOP SESSION

OPEN CONFIGURATIONS PANEL

SHOW/ HIDE TRANSMITTERS

FLOOR PLAN (FROM OSM) DISPLAY

FIXED TRANSMITTER (Multi Technology)

FIXED TRANSMITTER (BLE Beacon)

SPACE VIEW CONTROL

MOUSE COORDINATE DISPLAY

GRAPH-BASED MOTION

BLE BEACON CARRIED BY AN ACTOR

DRONE IN RANDOM MOTION

MACHINE IN GRAPH-BASED MOTION

ROBOT IN GRAPH-BASED MOTION

SMARTPHONE IN GRAPH-BASED MOTION

DRONE IN GRID MOTION

PEDESTRIAN IN RANDOM MOTION

PROGRESS AND SPEED INFO

RECENT MOTION PATH

POLYGON OBSTACLE (FROM OSM) WALL (FROM OSM)

PROBE IN STATIC MOTION

FIXED TRANSMITTER (More than 1 Wi-Fi AP)

PAUSE/ RESUME SESSION DEVICE DISPLAY MODESPEED CONTROL

DIOPTRA
Synthetic Data for Positioning and Navigation

Dioptra User’s Manual, v1.0

- 9 / 11 -

Several files are generated in each session of the simulator. Some files are the output of the sensors
and other information related to the session, while other files are about the tool itself (logging). These
files are described in the following sections.

4.1. Session output files

Data generated by Dioptra is written to a set of text files. One file is generated per actor, containing
all the data collected by the corresponding sensors.
These files are written to the directory specified in the configuration file (“output_folder”). The
names of the files follow the format:

yyyyMMdd_HHmmss_actor_id.csv

The format of these files is as shown in the example below.

% This is a comment
AHRS;sensor_id;time;x;y;z;w;roll;pitch;yaw <- an AHRS measurement

POSI;sensor_id;time;x;y;z;roll;pitch;yaw;floor_id;building_id
 <- a ground truth record (true pose of
 the device

ODOM;sensor_id;time;displacement <- a measurement from an odometer

STEP;sensor_id;time;step_length <- a detected step and step length

WIFI;sensor_id;time;SSID;BSSID;channel;RSSI <- a measurement from a Wi-Fi scanner
 a complete scan is represented by
 multiple lines like this one

BLE4;sensor_id;time;’dioptra’;beacon_id;deployment_id;major_id;minor_id;RSSI
 <- a measurement from a BLE scanner

This format is similar to the one used in IPIN Competitions7, in particular to the format used in Track
3 [2]. Note, however, that the two formats are not fully compatible.

In summary:

• lines starting with % are comments;
• the decimal separator is the character ‘.’;
• all timestamps are represented as the number of milliseconds elapsed since the beginning

of the simulation;
• all other lines represent the output of a sensor or a ground truth pose (reference sensor):

o AHRS: the output of a soft-sensor that estimates the heading, in the format:
AHRS;sensor_id;timestamp;x;y;z;w;roll;pitch;yaw, where (x,y,z,w) is the
orientation represented by a quaternion; (roll,pitch,yaw) are measured in degrees;

o POSI: a ground true record of the pose of an actor, in the format:
POSI;sensor_id;timestamp;x;y;z;roll;pitch;yaw;floor_id;buiding_id, with (x,
y, z) represented in meters and (roll,pitch,yaw) measured in degrees;

7 http://evaal.aaloa.org/2020/call-for-competitions2020

Dioptra User’s Manual, v1.0

- 10 / 11 -

o ODOM: a measurement from an odometer, in the format:
ODOM;sensor_id;timestamp;displacement, with displacement in meters;

o STEP: the output of a soft-sensor that detects a step (human walk), in the format:
STEP;sensor_id;timestamp;step_length, with the step length in meters;

o WIFI: a measurement from a Wi-Fi scanner, representing one detected Access Point (AP),
in the format: WIFI;sensor_id;timestamp;SSID,BSSID;channel;RSSI, where SSID is
the Wi-Fi network name, BSSID is the MAC address of the AP, channel is an integer and
RSSI is measured in dBm; the complete output of a scan might require multiple
consecutive WIFI records, all sharing the same timestamp;

o BLE4: a measurement from a Bluetooth Low Energy scanner, representing one detected
beacon, in the format: BLE4;sensor_id;time;’dioptra’;beacon_id;deployment_id;

major_id;minor_id;RSSI, where ‘dioptra’ defines the specific format used by Dioptra tool,
beacon_id is a unique identifier of the BLE beacon, RSSI is measured in dBm, and
deployment_id defines a set of beacons used for a particular application, and major_id
and minor_id are values assigned to BLE beacons8; the complete output of a scan might
require multiple consecutive BLE records, all sharing the same timestamp.

In addition to the files with the sensor measurements, two other files are generated:

• one file with the geometry of the obstacles (yyyyMMdd_HHmmss_obstacles.csv), where
each obstacle is described by one or more lines with the following format:
obstacle_id;x1;y1;x2;y2, representing lines (one single line) or polygons (multiple lines);
this file is generated only if the flag “output_obstacles” is set to true in the configuration
file;

• one file with the position of the fixed transmitters/beacons
(yyyyMMdd_HHmmss_transmitters.csv), where each line has the format:
transmitter_type;transmitter_id;x;y;z

4.2. Logging

For each session, a text file is also created in the directory specified in the configuration file
(“output_folder”) with logging data about the tool functioning.

5. Extending Dioptra

Dioptra will be available as an open-source project at GitHub. Researchers using Dioptra will be
invited to contribute to the tool development by adding new features and/or new models (motion,
sensors, radio propagation, etc.).
Further information on how to extend Dioptra will be provided in a separate document for
developers.

6. Licensing

Dioptra is provided free of charge under the BSD Licence.

8 https://support.kontakt.io/hc/en-gb/articles/201620741-iBeacon-Parameters-UUID-Major-and-Minor

Dioptra User’s Manual, v1.0

- 11 / 11 -

7. Support

Being an academic project, the team that developed Dioptra does not provide support for this tool.
However, we plan on continuing to use and further improve Dioptra in the future and in interacting
with users/programmers aiming to contribute to its enrichment. Interaction is encouraged through
GitHub (Issues).

References

[1] Pendão C., Silva, I., Moreira A., Torres-Sospedra, J. (2021) Dioptra – A Data Generation Application for
Indoor Positioning Systems. In 2021 International Conference on Indoor Positioning and Indoor Navigation
(IPIN) IEEE.

[2] Jiménez, A. R., Seco, F., & Torres-Sospedra, J. (2019). Tools for smartphone multi-sensor data registration
and GT mapping for positioning applications. In 2019 International Conference on Indoor Positioning and
Indoor Navigation (IPIN) (pp. 1-8). IEEE.

